Version 2.2
Updated 7/19/98
Supersedes: Version 2.0

Water Treatment FAQ
Version 2.2
By Patton Turner

Acknowledgements: Thanks to the following people for making additions, corrections, or suggestions: Richard DeCastro, decastro@netcom.com; Henry Schaffer, hes@unity.ncsu.edu; Alan T. Hagan, athagan@sprintmail.com; Logan Van Leigh, loganv@earthlink.net; Carl Stiles, blitz1@airmail.net .

Alan also provided the wording for the disclaimer and copyright notice.


NOTE: THESE PAGES HAVE BEEN DRAMATICALLY UPDATED
IN DARE TO PREPARE — 5th EDITION

Water Storage

Quantity

    A water ration of as little as a pint per day has allowed life raft survivors to live for weeks, but a more realistic figure is 1 gallon per person per day for survival. 4 gallons per person/day will allow personal hygiene, washing of dishes, counter tops, etc. 5 to 12 gallons per day would be needed for a conventional toilet, or 1/2 to two gallons for a pour flush latrine. For short-term emergencies, it will probably be more practical to store paper plates and utensils, and minimize food preparation, than to attempt to store more water.

    In addition to stored water, there is quite a bit of water trapped in the piping of the average home. If the municipal water system was not contaminated before you shut the water off to your house, this water is still fit for consumption without treatment. To collect this water, open the lowest faucet in the system, and allow air into the system from a second faucet. Depending on the diameter of the piping, you may want to open every other faucet, to make sure all of the water is drained. This procedure will usually only drain the cold water side, the hot-water side will have to be drained from the water heater. Again, open all of the faucets to let air into the system, and be prepared to collect any water that comes out when the first faucet is opened. Toilet tanks (not the bowls) represent another source of water if a toilet bowl cleaner is not used in the tank.

    Some people have plumbed old water heaters or other tanks in line with their cold water supply to add an always rotated source of water. Two cautions are in order: 1) make sure the tanks can handle the pressure (50 psi min.), and 2) if the tanks are in series with the house plumbing, this method is susceptible to contamination of the municipal water system. The system can be fed off the water lines with a shutoff valve (and a second drain line), preventing the water from being contaminated as long as the valve was closed at the time of contamination.

    Water can only be realistically stored for short-term emergencies, after that some emergency supply of water needs to be developed.

Water Collection

Wells

    Water can only be moved by suction for an equivalent head of about 20'. After this cavitation occurs, that is the water boils off in tiny bubbles in the vacuum created by the pump rather than being lifted by the pump. At best no water is pumped, at worst the pump is destroyed. Well pumps in wells deeper than this work on one of the following principles:

    1) The pump can be submerged in the well, this is usually the case for deep well pumps. Submersible pumps are available for depths up 1000 feet.

    2) The pump can be located at the surface of the well, and two pipes go down the well: one carrying water down, and one returning it. A jet fixture called an ejector on the bottom of the two hoses causes well water to be lifted up the well with the returning pumped water. These pumps must have an efficient foot valve as there is no way for them to self-prime. These are commonly used in shallow wells, but can go as deep as 350 feet. Some pumps use the annular space between one pipe and the well casing as the second pipe this requires a packer (seal) at the ejector and at the top of the casing.

    3) The pump cylinder can be located in the well, and the power source located above the well. This is the method used by windmills and most hand pumps. A few hand pumps pump the water from very shallow wells using an aboveground pump and suction line. A variety of primitive, but ingenious, pump designs also exist. One uses a chain with buckets to lift the water up. Another design uses a continuous loop rope dropping in the well and returning up a small diameter pipe. Sealing washers are located along the rope, such that water is pulled up the pipe with the rope. An ancient Chinese design used knots, but modern designs designed for village level maintenance in Africa use rubber washers made from tires, and will work to a much greater depth.

    Obviously a bucket can be lowered down the well if the well is big enough, but this won't work with a modern drilled well. A better idea for a drilled well is to use a 2' length or so of galvanized pipe with end caps of a diameter that will fit in the well casing. The upper cap is drilled for a screw eye, and a small hole for ventilation. The lower end is drilled with a hole about half the diameter of the pipe, and on the inside a piece of rigid plastic or rubber is used as a flapper valve. This will allow water to enter the pipe, but not exit it. The whole assembly is lowered in the well casing, the weight of the pipe will cause it to fill with water, and it can then be lifted to the surface. The top pipe cap is there mostly to prevent the pipe from catching as it is lifted.

Springs

   Springs or artesian wells are ideal sources of water. Like a conventional well, the water should be tested for pathogens, VOCs (Volatile Organic Compounds such as fuel oil or benzene), pesticides and any other contaminants found in your area. If the source is a spring it is very important to seal it in a spring box to prevent the water from becoming contaminated as it reaches the surface. It is also important to divert surface runoff around the spring box. As with a well, you will want to periodically treat the spring box with chlorine, particularly if the spring is slow moving. The spring may also be used for keeping food cool if a spring-house is built. If this is the case, it is still recommended to build a spring box inside the house to obtain potable water.

Surface water

    Most US residents served by municipal water systems supplied with surface water, and many residents of underdeveloped countries rely on surface water. While surface water will almost always need to be treated, a lot of the risk can be reduced by properly collecting the water. Ideal sources of water are fast flowing creeks and rivers which don't have large sources of pollution in their watershed. With the small amounts of water needed by a family or small group, the most practical way to collect the water is though an infiltration gallery or well. Either method reduces the turbidity of the collected water making it easy for later treatment.

Water Purification

Heavy Metals

    Heavy metals are only a problem is certain areas of the country. The best way to identify their presence is by a lab test of the water or by speaking with your county health department. Unless you are down stream of mining trailings or a factory, the problem will probably affect the whole county or region. Heavy metals are unlikely to be present in sufficient levels to cause problems with short-term use.

Turbidity

    Turbidity refers to suspended solids, i.e. muddy water, is very turbid. Turbidity is undesirable for 3 reasons:

1) aesthetic considerations
2) solids may contain heavy metals, pathogens or other contaminants,
3) turbidity decreases the effectiveness of water treatment techniques by shielding pathogens from chemical or thermal damage, or in the case of UV treatment, absorbing the UV light itself.

Organic compounds

    Water can be contaminated by a number of organic compound such as chloroform, gasoline, pesticides, and herbicides. These contaminants must be identified in a lab test. It is unlikely ground water will suddenly become contaminated unless a quantity of chemicals is allowed to enter a well or penetrating the aquifer. One exception is when the aquifer is located in limestone. Not only will water flow faster through limestone, but the rock is prone to forming vertical channels or sinkholes that will rapidly allow contamination from surface water. Surface water may show great swings in chemical levels due to differences in rainfall, seasonal crop cultivation, and industrial effluent levels

Pathogens

            Protozoa

    Protozoa cysts are the largest pathogens in drinking water, and are responsible for many of the waterborne disease cases in the US. Protozoa cysts range is size from 2 to 15 µm (a micron is one millionth of a meter), but can squeeze through smaller openings. In order to insure cyst filtration, filters with a absolute pore size of 1µm or less should be used. The two most common protozoa pathogens are Giardia lamblia (Giardia) and Cryptosporidium (Crypto). Both organisms have caused numerous deaths in recent years in the US, the deaths occurring in the young and elderly, and the sick and immune compromised. Many deaths were a result of more than one of these conditions. Neither disease is likely to be fatal to a healthy adult, even if untreated. For example in Milwaukee in April of 1993, of 400,000 who were diagnosed with Crypto, only 54 deaths were linked to the outbreak, 84% of whom were AIDS patients. Outside of the US and other developed countries, protozoa are responsible for many cases of amoebic dysentery, but so far this has not been a problem in the US, due to better wastewater treatment. This could change during a survival situation. Tests have found Giardia and/or Crypto in up to 5% of vertical wells and 26% of springs in the US.

            Bacteria

    Bacteria are smaller than protozoa and are responsible for many diseases such as typhoid fever, cholera, diarrhea, and dysentery. Pathogenic bacteria range in size from 0.2 to 0.6 µm, and a 0.2 µm filter is necessary to prevent transmission. Contamination of water supplies by bacteria is blamed for the cholera epidemics which devastate undeveloped countries from time to time. Even in the US, E. coli is frequently found to contaminate water supplies. Fortunately E. coli is relatively harmless as pathogens go, and the problem isn't so much with E. coli found, but the fear that other bacteria may have contaminated the water as well. Never the less, dehydration from diarrhea caused by E. coli has resulted in fatalities.

            Viruses

    Viruses are the 2nd most problematic pathogen, behind protozoa. As with protozoa, most waterborne viral diseases don't present a lethal hazard to a healthy adult. Waterborne pathogenic viruses range in size from 0.020-0.030 µm, and are too small to be filtered out by a mechanical filter. All waterborne enteric viruses affecting humans occur solely in humans, thus animal waste doesn't present much of a viral threat. At the present viruses don't present a major hazard to people drinking surface water in the US, but this could change in a survival situation as the level of human sanitation is reduced. Viruses do tend to show up even in remote areas, so case can be made for eliminating them now.

Physical Treatment

Heat Treatment

    Boiling is one guaranteed way to purify water of all pathogens. Most experts feel that if the water reaches a rolling boil it is safe. A few still hold out for maintaining the boiling for some length of time, commonly 5 or 10 minutes, plus an extra minute for every 1000 feet of elevation. If one wishes to do this, a pressure cooker would allow the water to be kept at boiling with out loosing the heat to evaporation. One reason for the long period of boiling may be to inactivate bacterial spores (which can survive boiling), but these spore are unlikely to be waterborne pathogens.

    African aid agencies figure it takes 1 kg of wood to boil 1 liter of water. Hardwoods and efficient stoves would improve on this.

    Water can also be treated at below boiling temperatures, if contact time is increased. A commercial unit has been developed that treats 500 gals of water per day at an estimated cost of $1/1000 gallons for the energy. The process is similar to milk pasteurization, and holds the water at 161° F for 15 seconds. Heat exchangers recover most of the energy used to warm the water. Solar pasteurizers have also been built that would heat three gallons of water to 65° C and hold the temperature for an hour. A higher temperature could be reached if the device was rotated east to west during the day to follow the sunlight.

    Regardless of the method, heat treatment does not leave any form of residual to keep the water free of pathogens in storage.

Reverse Osmosis

    Reverse osmosis forces water, under pressure, through a membrane that is impermeable to most contaminants. The most common use is aboard boats to produce fresh water from salt water. The membrane is somewhat better at rejecting salts than it is at rejecting non-ionized weak acids and bases and smaller organic molecules (molecular weight below 200). In the latter category are undissociated weak organic acids, amines, phenols, chlorinated hydrocarbons, some pesticides and low molecular weight alcohols. Larger organic molecules, and all pathogens are rejected. Of course it is possible to have a imperfection in the membrane that could allow molecules or whole pathogens to pass through.

    Using reverse osmosis to desalinate seawater requires considerable pressure (1000 psi) to operate, and for a long time only electric models were available. Competing for a contract to build a hand powered model for the Navy, Recovery Engineering designed a model that could operate by hand, using the waste water (90 percent of the water is waste water, only 10% passes through the filter) to pressurize the back side of the piston. The design was later acquired by PUR. While there is little question that the devices work well, the considerable effort required to operate one has been questioned by some survival experts such as Michael Greenwald, himself a survivor of a shipwreck. On the other hand the people who have actually used them on a life raft credit the availability of water from their PUR watermaker for their survival.

    PUR manual watermakers are available in two models: The Survivor 06 ($500) produces 2 pints per hour, and the Survivor 35 ($1350) produces 1.4 gal/hr. The latter model is also available as the Power Survivor 35 ($1700), which produces the same water volume from 4 Amps of 12 VDC, and can be disconnected and used as a hand held unit. A number of manufactures, including PUR, make DC powered models for shipboard use. PUR recommends replacing the O rings every 600 hours on its handheld units, and a kit is available to do this. Estimates for membrane life vary, but units designed for production use may last a year or more. Every precaution should be taken to prevent petroleum products from contacting the membrane as they will damage or destroy the membrane. The prefilter must also be regularly changed, and the membrane may need to be treated with a biocide occasionally

    Reverse osmosis filter are also available that will use normal municipal or private water pressure to remove contaminates from water, as long as they aren't present in the levels found in sea water.

    The water produced by reverse osmosis, like distilled water, will be close to pure H2O. Therefore mineral intake may need to be increased to compensate for the normal mineral content of water in much of the world.

Distillation

    Distillation is the evaporation and condensation of water to purify water. Distillation has two disadvantages: 1) A large energy input is required and 2) If simple distillation is used, chemical contaminants with boiling points below water will be condensed along with the water. Distillation is most commonly used to remove dissolved minerals and salts from water.

    The simplest form of a distillation is a solar still. A solar still uses solar radiation to evaporate water below the boiling point, and the cooler ambient air to condense the vapor. The water can be extracted from the soil, vegetation piled in the still, or contaminated water (such as radiator fluid or salt water) can be added to the still. While per still output is low, they are an important technique if water is in short supply

    Other forms of distillation require a concentrated heat source to boil water which is then condensed. Simple stills use a coiling coil to return this heat to the environment. These can be improvised with a boiler and tight fitting lid and some copper tubing (Avoid using lead soldered tubing if possible). FEMA suggests that, in an emergency, a hand towel can be used to collect steam above a container of boiling water. More efficient distillations plants use a vapor compression cycle where the water is boiled off at atmospheric pressure, the steam is compressed, and the condenser condenses the steam above the boiling point of the water in the boiler, returning the heat of fusion to the boiling water. The hot condensed water is run through a second heat exchanger which heats up the water feeding into the boiler. These plants normally use an internal combustion engine to run the compressor. Waste heat from the engine, including the exhaust, is used to start the process and make up any heat loss. This is the method used in most commercial and military desalinization plants

    Inflatable solar stills are available from marine supply stores, but avoid the WW2 surplus models, as those who have used them have had a extremely high failure rate. Even new inflatable solar stills may only produce from 30-16 oz under actual conditions, compared to a rating of 48 oz/day under optimum conditions.

    Jade Mountain also offers the following portable models in travel cases:

Traveler (WC106) 1 gpd, 23 lb., 24x26x10 folded $ 695

Base Camp (WC107) 2 gpd, 51 lb., 48x48x4 folded $ 895

Safari (WC108) 48x48x5 $1095

    A ruggedized version of the Base Camp above

Part 2